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Cyclotron resonance in graphene is studied with focus on many-body corrections to the resonance energies,
which evade Kohn’s theorem. The genuine many-body corrections turn out to derive from vacuum polariza-
tion, specific to graphene, which diverges at short wavelengths. Special emphasis is placed on the need for
renormalization, which allows one to determine many-body corrections uniquely from one resonance to an-
other. For bilayer graphene, in particular, both intralayer and interlayer coupling strengths undergo infinite
renormalization; as a result, the renormalized velocity and interlayer coupling strength run with the magnetic
field. A comparison of theory with the experimental data is made for both monolayer and bilayer graphene.
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I. INTRODUCTION

Graphene, a monolayer graphite, attracts great attention
for its unusual electronic transport1–6 as well as its potential
applications. It supports as charge carriers massless Dirac
fermions, which lead to such exotic phenomena as the half-
integer quantum-Hall �QH� effect and minimal conductivity.

The multispinor character of the electrons in graphene
derives from the sublattice structure of the underlying hon-
eycomb lattice, and this immediately implies, in the low-
energy effective theory of graphene, the quantum nature of
the vacuum state;7 the conduction and valence bands are re-
lated by charge conjugation and, in particular, the latter acts
as the Dirac sea. Graphene in a magnetic field B thus gives
rise to a particle-hole symmetric “relativistic” pattern of Lan-
dau levels, with spectra �n����n��B unequally spaced, to-
gether with four characteristic zero-energy Landau levels
�whose presence has a topological origin8�.

This nontrivial vacuum structure is the key feature that
distinguishes graphene and its multilayers from conventional
QH systems. In particular, bilayer graphene9 supports, as a
result of interlayer coupling, massive fermions, which, in a
magnetic field, again develop a particle-hole symmetric
tower of Landau levels, with an octet of zero-energy levels.10

Bilayer graphene has a unique property that its band gap is
externally controllable.11–14

Graphene and its multilayers give rise to rich spectra of
cyclotron resonance, with resonance energies varying from
one transition to another within the electron band or the hole
band, and, notably, even between the two bands. This is in
sharp contrast with conventional QH systems with a para-
bolic dispersion, where cyclotron resonance �optically in-
duced at zero-momentum transfer k=0� takes place between
adjacent Landau levels, hence at a single frequency
�c=eB /m� which, according to Kohn’s theorem,15 is unaf-
fected by Coulomb interactions. Nonparabolicity16 of the
electronic spectra in graphene evades Kohn’s theorem and
offers the possibility to detect the many-body corrections to
cyclotron resonance, as discussed theoretically for mono-
layer graphene.17,18

Experiment has already studied via infrared spectroscopy
cyclotron resonance in monolayer19,20 and bilayer21

graphene, and verified the characteristic features of the asso-
ciated Landau levels. Data generally show no clear sign of

the many-body effect, except for one19 on monolayer
graphene.

The purpose of this paper is to study the many-body effect
on cyclotron resonance in graphene, by constructing an ef-
fective theory of cyclotron resonance within the single-mode
approximation. It is shown that the genuine many-body cor-
rections arise from vacuum polarization, specific to
graphene, which actually diverges logarithmically at short
wavelengths and requires renormalization. Our approach in
part recovers results of earlier studies17,18 on monolayer
graphene but essentially differs from them in this handling of
cutoff-dependent corrections by renormalization, which al-
lows one to determine many-body corrections uniquely from
one resonance to another. Our analysis also reveals that for
bilayer graphene both intralayer and interlayer coupling
strengths undergo renormalization.22,23 We compare theory
with the experimental data for monolayer and bilayer
graphene.

In Sec. II we briefly review the effective theory of
graphene and, in Sec. III, study cyclotron resonance in
monolayer graphene, with focus on the many-body correc-
tions and renormalization. In Sec. IV we extend our analysis
to bilayer graphene. Section V is devoted to the summary
and discussion.

II. MONOLAYER GRAPHENE

Graphene has a honeycomb lattice which consists of two
triangle sublattices of carbon atoms. The electrons in
graphene are described by a two-component spinor field
��A ,�B� on two inequivalent lattice sites �A ,B�. The elec-
trons acquire a linear spectrum near the two inequivalent
Fermi points �K and K�� in the Brillouin zone, with the “light
velocity” v0= ��3 /2�aL�0 /��106 m /s related to the intra-
layer coupling �0��AB�2.9 eV �with aL=0.246 nm�.

Their low-energy features are described by an effective
Hamiltonian of the form7

H0 =� d2x��†H+� + ��†H−��	 ,

H� = v0�	1
1 + 	2
2� �m	3� − eA0, �2.1�

where 
i=−i�i+eAi �i= �1,2� or �x ,y�	 involve coupling to
external electromagnetic potentials A= �Ai ,A0�. Here
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����1 ,�2�t= ��A ,�B�t stands for the electron field at one �or
K� valley, and ��= ��B� ,�A��t to one at another valley, with A
and B referring to the associated lattice sites. �m denotes a
possible tiny asymmetry in sublattices.

Let us place graphene in a uniform magnetic field
B�=B�0; we set Ai→B�−y ,0�. The electron spectrum then
forms an infinite tower of Landau levels Ln of energy

�n = sn�c
��n� + ��m�2�2/2 �2.2�

labeled by integers n=0,�1,�2, . . ., and px

�or y0��2px with the magnetic length ��1 /�eB�. Here
sn�sgn
n�=�1 specifies the sign of the energy �n and

�c � �2v0/� � 36.3� v0�106 m/s	�B�T	 meV �2.3�

is the basic cyclotron frequency; v0�106 m /s	 stands for v0
in units of 106 m /s and B�T	 stands for a magnetic field in
tesla.

Suppose, without loss of generality, that �m�0.
Then the n=0 level at the K valley has positive energy
�0+

=v0�m�0 while the n=0 level at the K� valley has nega-
tive energy �0−

=−v0�m. In general, the spectra at the two
valleys are related as �n �K=−�−n �K�. With the electron spin
taken into account �and Zeeman splitting ignored for sim-
plicity�, each Landau level is thus fourfold degenerate, ex-
cept for the doubly degenerate n=0� levels split in valley.
With this feature in mind, we shall set the asymmetry
�m→0 in what follows.

The Coulomb interaction is written as

HCoul =
1

2�
p

vp:�−p�p: , �2.4�

where �p is the Fourier transform of the electron density
�=�†�+��†�� �here �†�, e.g., is summed over spinor and
spin indices�; vp=2�� / ��b�p�� is the Coulomb potential with
the fine-structure constant �=e2 / �4��0��1 /137 and the
substrate dielectric constant �b.

The Landau-level structure is made explicit by
passing to the �n ,y0 basis, with the expansion
��x , t�=�n,y0

�x �n ,y0�n�y0 , t�. �For conciseness, we shall
only display the � sector from now on.� The Hamiltonian H0
is thereby rewritten as

H0 =� dy0 �
n=−�

�

�n
†�y0,t��n�n�y0,t� �2.5�

and the charge density �−p�t�=�d2xeip·x�†� as24

�−p = �
k,n=−�

�

�−p
kn = �

k,n=−�

�

gp
knRp

kn,

Rp
kn = �p� dy0�k

†�y0,t�eip·r�n�y0,t� , �2.6�

where �p=e−�2p2/4; and r= �rx ,ry�= �i�2� /�y0 ,y0� stands for
the center coordinate with uncertainty �rx ,ry	= i�2. The
charge operators Rp

kn obey the W� algebra25

�Rk
mm�,Rp

nn�	 = �m�nek†p/2Rk+p
mn� − �n�mep†k/2Rk+p

nm� , �2.7�

where k†p=k ·p− ik�p with k�p�kxpy −kypx. This actu-
ally consists of two W� algebras associated with intralevel
center-motion25 and interlevel mixing26 of electrons.

The coefficient matrix gp
kn is given by

gp
kn =

1

2
bkbn�fp

�k�−1,�n�−1 + sksnfp
�k�,�n�� , �2.8�

where bn=1 for n�0 and b0=�2:

fp
kn =�n!

k!�− �p
�2

�k−n

Ln
�k−n��1

2
�2p2� �2.9�

for k�n�0 and fp
nk= �f−p

kn �†; p= px− ipy. Note that gp
kn are

essentially the same at the two valleys, i.e., gp
kn �K�=gp

kn �K and
gp

k0− �K�=gp
k0+ �K for �k��1 and �n��1; one simply needs to

specify n=0� accordingly.

III. CYCLOTRON RESONANCE

In this section we study cyclotron resonance in monolayer
graphene. Let us first note that the charge operator
�−p

kn =gp
knRp

kn in Eq. �2.6� annihilates an electron at the nth
level Ln and creates one at the kth level Lk. One may thus
associate it with the interlevel transition Ln→Lk or regard it
as an interpolating operator for the exciton consisting of a
hole at Ln and an electron at Lk.

To describe such inter-Landau-level excitations one can
make use of a nonlinear realization of the W� algebra, as is
familiar from the theory of quantum-Hall ferromagnet.27 One
may start with a given ground state �G and describe an

excited collective state �G̃ over it as a local rotation in
�n ,y0� space

�G̃ = e−iO�G , �3.1�

where the operator e−iO with

O = �
p
�p

−1�p
knRp

kn �3.2�

locally rotates �G by “angles” �p
kn, which define textures in

�n ,y0� space. �Remember here that �p�Rp
kn are diagonal in

spin so that �p
kn carry the spin index as well, though it is

suppressed. In principle, one has to retain in O all possible
pairs �p

kn and ��p
kn�†=�−p

nk contributing to the Ln→Lk tran-
sition.�

Repeated use of the charge algebra in Eq. �2.7�
allows one to express the texture-state energy

�G̃�H�G̃= �G�eiOHe−iO�G with H=H0+HCoul as a functional
of �p

kn or its x-space representative �kn�x , t�. The kinetic
term for �kn is supplied from the electron kinetic term and
one can write the effective Lagrangian for � as

L� = �G̃��i�t − H��G̃ = �G�eiO�i�t − H�e−iO�G . �3.3�

This representation systematizes the single-mode
approximation25 �SMA� within a variational framework.26

The present theory thus embodies the nonperturbative fea-
tures of the SMA.
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Indeed, for a transition from the filled level Ln �with den-
sity �̄n� to the empty level Lk, one finds

L� = �̄n�
p
�−p

nk �i�t − �p
exc��p

kn + ¯ �3.4�

with the excitation spectrum given by the SMA formula

�p
exc = �G���p

nk,�H,�−p
kn 		�G/�G��p

nk�−p
kn �G , �3.5�

i.e., as the oscillator strength divided by the static structure
factor

�G��p
nk�−p

kn �G/� = �̄n�p
2�gp

kn�2, �3.6�

where �=�d2x.
Let us first consider the n=0�→n=1 transitions at filling

factor �=2 with all n�0� levels filled and all n�1 levels
empty. A laborious direct calculation of Eq. �3.5� yields
�k

exc=�1−�0+��k
10 with

��k
10 = �̄0vk�k

2�gk
10/gk

00�2 + �
p

vp�p
2Ip,k,

Ip,k = �
n�0

��gp
0n�2 − �g−p

1n �2� − cp,kgp
11g−p

00 , �3.7�

where �k
2 =e−�2k2/2 and cp,k=cos��2p�k�.

When the n=0� level is partially filled, ��k
10 involves the

following contribution:

��k
10 = �

p
vp�p

2��gp
01/gp

00�2s̄�p + k�/�p+k
2

+ �cp,kgp
11/gp

00 − 1�s̄�p�/�p
2	 , �3.8�

where s̄�p� stands for the projected static-structure factor de-
fined as �G��−p

00�p
00�G /�= �̄0
�̄0�p,0+ s̄�p��. The determina-

tion of s̄�p� is a highly nontrivial task which requires an
exact diagonalization study of model systems16 and is not
attempted here. We instead focus on the case of integer fill-
ing, for which s̄�p� is taken to vanish.

Equation �3.7�, together with Eq. �3.8�, essentially agrees
with the result of MacDonald and Zhang28 for the L0→L1
transition in the standard QH system. The key difference is
that quantum fluctuations in Ip,k now involve a sum
�n�−1�¯ � over infinitely many Landau levels in the valence
band �or the Dirac sea�. Actually, one can verify that the
SMA expressions �3.7� and �3.8� equally apply to a general
interlevel transition La→Lb if one sets the superscripts
0→a and 1→b, in an obvious fashion, and takes the sum
�n over filled levels.

To be precise, the 0→1 transition of our interest consists
of four channels, �0+→1� �K and �0−→1� �K� each with spin
sz=�1 /2. One therefore has to consider mixing of four �10

to determine �k
exc. Actually only the first term �vk�gk

10�2 in Eq.
�3.7�, which comes from the direct Coulomb exchange, is
responsible for such mixing17,18 because the rest of terms are
diagonal in spin and valley. Such direct terms �vk�g−k

ba �2
�with b�a� in general vanish for k→0 and mixing thus
takes place only for k�0. In what follows we focus on the
k=0 excitation energies �k=0

exc with no mixing taken into ac-
count. In addition, we make no distinction between the 0�

levels because gp
kn are essentially the same at the two valleys,

as noted in Sec. II.
The cyclotron-resonance energy for a general La→Lb

transition with the Landau levels filled up to n=nf is written
as �k=0

exc =�b−�a+��k=0
b←a with

��k=0
b←a = �

p
vp�p

2� �
n�nf

��g−p
an �2 − �gp

bn�2� − gp
bbg−p

aa� . �3.9�

This is the basic formula we use in what follows. Note that
nf=1 ,0+ ,−1 ,−2,−3, . . . correspond to the filling factors
�=4nf+2=6,2 ,−2 ,−6,−10, . . ., respectively. The
�n�nf

��gp
an�2− �g−p

bn �2� term refers to the change in quantum
fluctuations, via the a→b transition, of the filled states. Its
structure is easy to interpret physically: as an electron is
excited from La to Lb, �n=a ,y0→ �n=b ,y0�, virtual transi-
tions from any filled levels to the �b ,y0� state are forbidden
while those to the newly unoccupied �a ,y0 state are allowed
to start.

For standard QH systems this correction ��k=0
b←a vanishes

for each transition to the adjacent level, Ln→Ln+1, according
to Kohn’s theorem.15 Indeed, one can verify, for the 0→1
transition, the relation

�g−p
00 �2 − �gp

10�2 − gp
11g−p

00 = 0 �3.10�

�with gp
00→1 and gp

10→−�p /�2� and analogous ones for
other Ln→Ln+1 as well.

Interestingly, it happens that Eq. �3.10� also holds for the
0�→1 transition in graphene, with gp

00=1, gp
10=−�p /2, and

gp
11=1−�2p2 /4. Any nonzero shift ��k=0

1←0 for the 0→1 cy-
clotron resonance therefore comes from the quantum fluctua-
tions of the Dirac sea and actually diverges logarithmically
with the number NL of filled Landau levels in the sea

��0
1←0 = �

p
vp�p

2 �
−NL�n�−1

��g−p
0n �2 − �gp

1n�2� = VcCN,

CN � ��2/8��log NL − 1.017� , �3.11�

where

Vc � �/��b�� � �56.1/�b��B�T	 meV. �3.12�

CN agrees29 with the result of earlier works17,18 obtained by a
different method.

This divergence in CN derives from short-wavelength
vacuum polarization and is present even for B=0. To see this
one may evaluate the Coulomb exchange correction in free
space �with �→� /�b�, using the instantaneous photon and
fermion propagators vk=2�� / ��b�k�� and iS�p�=	ipi / �2�p��:

�
k

vkiS�p + k� = 	 · p
�

8�b
log�C�2/p2� �3.13�

with momentum cutoff �k��� and some constant C.
This divergent correction causes infinite renormalization30

of velocity v0 in the electron kinetic term �v0	
i�i; Eq. �3.13�

agrees with an earlier result of Ref. 30. It vanishes at p=0
but, for B�0, turns into a nonvanishing energy gap, with
p2→2eB=2 /�2. Actually, this diverging piece precisely
agrees with that in Eq. �3.11�, if one simply chooses the
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“Fermi momentum” � so that the Dirac sea accommodates
the same number of electrons as in the B�0 case,
Nsea=�2 /4��NL /2��2, i.e., �2�2NL /�2.

Since such an infinite correction is already present
for B=0, it does not make sense to discuss the magnitude of
the cutoff-dependent number CN in Eq. �3.11�. The legitimate
procedure is to renormalize v0 by rescaling

v0 = Zvv0
ren �3.14�

and put reference to the cutoff into Zv with v0
ren regarded as

an observable quantity.
The renormalized velocity v0

ren is defined by referring to a
specific resonance. Let us take the 0→1 resonance and
choose to absorb the entire O�Vc� correction at some refer-
ence scale �e.g., at magnetic field B0� into Zv, i.e., we write

�k=0
1←0 =

�=2

�1 + ��k=0
1←0 = �2v0

ren�B/� � �c
ren�B �3.15�

by setting

Zv = 1 −
�

�2v0�b

CN = 1 −
�

8v0�b
log
�2

�2 , �3.16�

where �2= �const.�eB0. The renormalized velocity then de-
pends on B or runs with B

v0
ren�B = v0

ren�B0
−
�

8�b
log�B/B0� , �3.17�

decreasing slightly for B�B0; actually the correction is
rather small �about 3% for B /B0�2 and �b�5 with
v0

ren�c /300�. With such B dependence in mind, we denote
v0

ren �B as v0
ren and �c

ren �B as �c
ren from now on.

The divergences in �k
exc=�k−�n+��k for all other

resonances, as illustrated in Fig. 1�a�, are taken care
of by this velocity renormalization. The finite corrections
�Vc after renormalization then make sense as genuine ob-
servable corrections. In particular, for several intraband
channels Ln→Ln+1 at filling factor �=4nf+2, direct calcula-
tions yield

�k=0
2←1 =

�=6

��2 − 1�
�c
ren − 0.264Vc� ,

�k=0
3←2 =

�=10

��3 − �2�
�c
ren − 0.358Vc� ,

�k=0
4←3 =

�=14

��4 − �3�
�c
ren − 0.419Vc� ,

�k=0
5←4 =

�=18

��5 − �4�
�c
ren − 0.464Vc� , �3.18�

where Vc=� / ��b��. The Coulomb corrections, shown nu-
merically here, are analytically calculable. The excitation
spectra �k in the hole band are essentially the same

�k
−n←−�n+1��nf=−�n+1�

�=−�4n+2� = �k
n+1←n�nf=n

�=4n+2 �3.19�

reflecting the particle-hole symmetry.
Figure 1�b� shows some of the momentum profiles �p

2�¯ 	
in ��k=0

n+1←n of Eq. �3.9�, which, when integrated over
��p�, give ��k=0

n+1←n / ��n+1−�n� in units of Vc. It is clearly
seen that the slowly decreasing high-momentum
tails ���2 /4� / ���p�� are responsible for the ultraviolet �UV�
divergence and that the finite observable corrections �Vc are
uniquely determined from the profiles in the low-momentum
region ��p��15.

A look into the structure of the total current operator tells
us that the optically induced cyclotron resonance �for k=0�
in graphene is governed by the selection rule ��n�=�1, in
contrast to the “nonrelativistic” rule �n=�1. In particular,
there are two classes of transitions �i� −n→� �n−1� and �ii�
��n−1�→n �with n�1�, which are distinguished31 by use
of circularly polarized light ��Ax� iAy�; see Appendix B

As a result, graphene supports interband cyclotron reso-
nances. The lowest channels are open at �=−2 with

�k=0
2←−1 =

�=−2

��2 + 1�
�c
ren + 0.122Vc� ,

�k=0
1←−2 =

�=−2

��2 + 1�
�c
ren + 0.155Vc� . �3.20�

Some other interband channels yield

�k=0
1←−2 =

�=−6

��2 + 1�
�c
ren + 0.084Vc� ,

�k=0
3←−2 =

�=−6

��2 + �3�
�c
ren + 0.058Vc� ,

�k=0
2←−3 =

�=−6

��2 + �3�
�c
ren + 0.114Vc� ,

�k=0
2←−3 =

�=−10

��2 + �3�
�c
ren + 0.044Vc� . �3.21�

It is now clear that cyclotron resonance is best analyzed
by plotting the rescaled energies �k=0

b←a / �sb
��b�−sa

��a�� as a
function of �B or B. The Coulombic many-body effect will
be seen as a variation in the characteristic velocity
v0

ren�1+O�Vc�	 from one resonance to another and a deviation
of �c

ren from the �B behavior would indicate the running of
v0

ren with B.

2 4 6 8 10 12 14

0.05

0.10

0.15

0.20

FIG. 1. �Color online� �a� Cyclotron resonance; circularly polar-
ized light can distinguish between two classes of transitions indi-
cated by different types of arrows. �b� Momentum profiles of the
many-body corrections ��k=0

n+1←n / ��n+1−�n� in units of Vc for
n=0, 1, 2, and 3.
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Figure 2�a� shows such plots for some intraband and in-
terband channels, using v0

ren �B=10 T�1.13�106 m /s which
fits the 0→1 resonance data, and, as a typical value,
Vc=� / ��b���12�B�T	 meV ��b�5�.

Actually, experiment19 has already observed a small de-
viation of the 1: �1+�2� ratio of �k=0

1←0 to �k=0
2←−1 well outside

of the experimental errors under high magnetic fields
B= �6–18� T; the data are apparently electron-hole symmet-
ric, �k=0

1←0��k=0
0←−1. Figure 2�a� includes such data reproduced

from Ref. 19. A small increase in v0
ren in �k=0

2←−1 / ��2+1�, rela-
tive to �k=0

1←0, is roughly consistent with Eq. �3.20� which
suggests a 0.122Vc /�c

ren�4% increase in v0
ren �since

Vc /�c
ren�0.3�.

This feature is clearer from Fig. 2�b�, which plots the �k=0
1←0

and �k=0
2←−1 / ��2+1� data as a function of B in units of

�c=�2v0 /���B �with v0→v0
ren �B=10 T�. The deviation of the

�−1→2� resonance data is more pronounced. In the figure a
dotted curve represents a possible profile of the running of
v0

ren with B, and, especially, the �−1→2� data �with smaller
error bars� suggests such running.

It is too early to draw any definite conclusion from the
present data alone but the data is certainly consistent �in sign
and magnitude� with the present estimate of the many-body
effect. In this connection, let us note that an earlier experi-
ment on thin epitaxial graphite32 also observed the �0→1�
and �−1→2� resonances with apparently no deviation from
the 1: �1+�2� ratio. This measurement was done under rela-
tively weak magnetic fields B= �0.4–4� T, and it could be
that a small deviation, under larger error bars, simply es-
caped detection, apart from the potential difference between
thin graphite and graphene.

More precise measurements of cyclotron resonance, espe-
cially in the high B domain where the Coulomb interaction
becomes sizable, would be required to pin down the many-

body effect in graphene. In this respect, the comparison be-
tween interband and intraband resonances from the same ini-
tial state, e.g., −n→� �n−1� at �=2−4n with n=2,3 , . . .,
would provide a clearer signal for the many-body effect, with
the influence of other possible sources reduced to a mini-
mum. From Eqs. �3.18�–�3.21� one can read off the varia-
tions in v0

ren

�R�− 2 → � 1� �
�=−6

0.34Vc/�c
ren � 10%,

�R�− 3 → � 2� �
�=−10

0.40Vc/�c
ren � 12%, �3.22�

which imply that a comparison of the �−2→�1� resonances
and that of the �−3→�2� resonances would find variations
in v0, about three times larger than the �4% variation for
�k=0

2←−1 / ��2+1� vs �k=0
0←−1 at �=−2.

IV. CYCLOTRON RESONANCES IN BILAYER
GRAPHENE

In this section we consider cyclotron resonance in
bilayer graphene. In bilayer graphene the electrons are de-
scribed by four-component spinor fields on the four in-
equivalent sites �A ,B� and �A� ,B�� in the bottom and top
layers, arranged in Bernal A�B stacking. Interlayer
coupling33 �1��A�B��0.3–0.4� eV modifies the intralayer
linear spectra �v0�p� to yield, in the low-energy branches
�����1, quasiparticles with a parabolic dispersion.10 They, in
a magnetic field, lead to a particle-hole symmetric tower of
Landau levels 
Ln� �n=0� ,�1, . . .� with spectrum

�n = sn�c�n���1/�c�2	 , �4.1�

where �n�x�= 
�an+x−�x2+2anx+1� /2�1/2 with an=2�n�−1;
see Appendix A The sequence of low-lying levels is made
clearer in the form

�n = sn�
bi��n���n� − 1�/�n�w� �4.2�

with the characteristic cyclotron energy

�bi � �c
2/�1 = 2v0

2/��1�2� � 5B�T	 meV, �4.3�

where �n�w�= 
�1+anw+�1+2anw+w2� /2�1/2 and w
���c /�1�2=�c

bi /�1�0.01B�T	�1; �n�0�=1. The high-
energy branches �����1 of the spectra give rise to another
tower of Landau levels with spectrum

�n
+ = sn�1�n�w� , �4.4�

where n=�1,�2, . . ..
Note that �n�w�=1+O�eB /�1�. As a result, �n rises lin-

early with B at low energies ��n���1 and turns into a �B rise
for ��n� �1. Both �n and �n

+ approach ���n��c for �n�→�
since the bilayer turns into two isolated layers at short wave-
lengths.

In the bilayer there arise four zero-energy levels �n=0
with n= �0� ,�1� per spin. At one valley �say, K� they are
electron levels with n= �0+,1� and, at another valley, they are
hole levels with n= �0−,−1�; this feature is made explicit
with a weak layer asymmetry, such as an interlayer voltage
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200

0 5 10 15 200.8

0.9
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1.1
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1.2

FIG. 2. �Color online� �a� Rescaled cyclotron-resonance ener-
gies as a function of �B with v0

ren�1.13�106 m /s �at B=10 T�
and Vc�12�B�T	 meV ��b�5�. The experimental data on �k=0

1←0

and �k=0
2←−1 / ��2+1� are quoted from Ref. 19 with error bars inferred

from the symbol size in the original data. �b� The same data
plotted in units of �c=�2v0 /� �with v0→v0

ren �B=10 T� as a function
of B. The dotted curve represents a possible profile of the
running of v0

ren �B, normalized to 1 at B=10 T, with
v0

ren �B=10 T�1.13�106 m /s and �b�5.
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which opens up a �tunable� band gap.11–14 With a nonzero
band gap, the zero-energy levels evolve into two quartets of
nearly degenerate levels �separated by the gap�, i.e.,
“pseudozero-mode” levels, which are expected to support
pseudospin waves34,35 as characteristic collective excitations.

For simplicity, we here turn off such a layer asymmetry as
well as Zeeman splitting and the effect of trigonal warping
�coming from �3��AB���1�. In view of the small layer
separation, we do not distinguish between the intralayer and
interlayer Coulomb interactions. Each Landau level Ln is
thus treated as fourfold degenerate, except for the zero-mode
levels �L0+

,L1� or �L0−
,L−1� which are fourfold degenerate at

each valley.
The effective Hamiltonian for the electrons in bilayer

graphene takes a 4�4 matrix form which, for studying the
properties of the low-lying levels, may be reduced to an ap-
proximate 2�2 form.10 Actually, the bending of the
spectrum �n with B is appreciable in the high-B domain,
B= �10–20� T, where cyclotron resonance in bilayer
graphene has been studied experimentally. Accordingly we
employ the full four-component spinor description of the bi-
layer system; see Appendix A for details.

The charge density �−p �for each spin and valley� takes
the same form as Eq. �2.6� with gp

kn replaced by

gp
kn = DkDn�fp

�k�,�n� + !k
�2�!n

�2�fp
�k�−2,�n�−2 + �!k

�3�!n
�3�

+ !k
�4�!n

�4��fp
�k�−1,�n�−1	; �4.5�

see Appendix A for the coefficients 
!n
�i�� and Dn. The sets

��n ,gp
kn� at the K and K� valleys are related as

�n�K� = − �−n�K, gp
kn�K� = gp

−k,−n�K. �4.6�

Actually, for zero band gap, gp
kn are essentially the same at

the two valleys since one further finds that

gp
kn�K� = gp

kn�K, gp
k,−1�K� = gp

k,1�K, gp
k,0−�K� = gp

k,0+�K
�4.7�

for �k��2 and �n��2.
One can now use the SMA formula �3.9� to calculate the

interlevel excitation energies �k
exc=�b−�a+��k

b←a. The result
applies to both valleys if one specifies the zero-mode levels
accordingly. It is important to remember that for bilayer
graphene the sum �n over filled levels involves two branches
�−n and �−n

+ in the valence band.
Cyclotron resonance in bilayer graphene again obeys the

selection rule31 ��n�=�1; see Appendix B and Fig. 3�a�. The
Coulombic corrections ��k=0

b←a are diagonal in spin and valley
�while mixing arises for k�0�. The vacuum-polarization ef-
fect again makes ��k=0

b←a cutoff dependent.
For renormalization let us first look into the B=0 case.

One can construct the electron propagator and, as in the
monolayer case, calculate the Coulombic quantum correc-
tions. It turns out that not only v0 but also �1 undergo infinite
renormalization and, rather unexpectedly, the divergent terms
are the same for both of them to O�Vc� at least; they also
coincide with the divergent term in the monolayer case; see
Appendix C for details. To be precise, the divergences are
removed, to O�Vc� of our present interest, by rescaling

v0 = Zv0
ren, �1 = Z�1

ren �4.8�

with a common factor Z.
This scaling tells us how to carry out renormalization in

the presence of a magnetic field B. Let us write, as in Eq.
�3.18� of the monolayer case, the excitation energy for the
Ln→Lk transition in the form

�k=0
k←n = �sk�k − sn�n���2v0/� + cknVc� �4.9�

with �n=�n�1 /w�. Note first that v0 /�1=v0
ren /�1

ren is invariant
under renormalization; it is therefore finite and does not run
with B. Similarly, w= ��c /�1�2� �v0

ren /�1
ren�2B is invariant

and is linear in B. This means that �n�1 /w� remain unrenor-
malized and finite. Equation �4.9� then reveals a remarkable
structure of the Coulombic corrections ckn: The divergent
pieces are common to all ckn and are removed by a single
counterterm ��Z−1�v0

ren.
Figure 3�b� depicts the momentum profiles �p

2�¯ 	 of
��k=0

k←n / �sk�k−sn�n� for some typical resonances. For com-
parison the profile for the monolayer resonance ���k=0

1←0�mono

is also included there. The gradually decreasing high-
momentum tails, common to all, numerically demonstrate
the validity of the scaling in Eqs. �4.8� and �4.9�. This further
verifies that the leading logarithmic velocity renormalization
is formally the same for both monolayer and bilayer
graphene.
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FIG. 3. �Color online� �a� Cyclotron resonance in bilayer
graphene. �b� Momentum profiles of the bilayer many-body
corrections ��k=0

n+1←n / ��n+1−�n� for n=1, 2, and 3, with v̂0=1.15
and �̂1=3.5; real curves at B=10 T and dashed curves at
B=16 T. A dotted curve refers to the profile of the monolayer
�0→1� resonance. �c� Resonance energies as a function of B; real
curves, with v̂0=1.15, �̂1=3.5, and Vc=0; dotted curves,
with v̂0=1.15, �̂1=3.8, and Vc�5.6�B�T	 meV �or �b�10�. The
experimental data with error bars are reproduced from Ref. 21. Note
that the low-lying n=2 spectrum �2 �equal to the �=4 curve�
significantly deviates from the approximate spectrum �2��2�c

bi

with �2�w�→1 �dashed line �B� for B�10 T.
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For renormalization let us refer to a specific resonance,
e.g., the −3→−2 resonance at �=−8, and define v0

ren so as to
absorb its entire O�Vc� correction

�c
ren � �2v0

ren�B/� = �2v0/� + c−2,−3Vc. �4.10�

One then has, for general n→k channels

�k=0
k←n = �sk�k − sn�n���c

ren + �cknVc� . �4.11�

Here �ckn�ckn−c−2,−3 are now free from the UV
divergence and are uniquely fixed as genuine quantum
corrections. In terms of the bilayer cyclotron frequency
��bi�ren���c

ren�2 /�1
ren, this also reads

�k=0
k←n = �sk"k − sn"n�
��bi�ren + �ckn�wVc� �4.12�

with "n=��n���n�−1� /�n�w� and w= ��bi�ren /�1
ren.

The quantum corrections �ckn, unlike those of the mono-
layer case, are not pure numbers and, actually, are functions
of �w=�c

ren /�1
ren. This is seen if one notes that gp

kn are func-
tions of �w and �p so that ckn are functions of �w and the
cutoff NL��

2 / �eB�; the cutoff-independent corrections �ckn

thus depend on w alone. Let us set �1
ren= �̂1�100 meV and

v0
ren= v̂0�106 m /s so that 1 /�w=�1

ren /�c
ren�2.75G with

G= �̂1 / �v̂0
�B�T	�; G=1 for �̂1=3.5 and v̂0�1.107 at

B=10 T. It turns out that �ck,n, when plotted in G, behave
almost linearly around G=1.

The way v0
ren runs with B is determined from

v0
ren�B = v0

ren�B0
+ �c−2,−3�/��2�b� , �4.13�

where �c−2,−3�c−2,−3 �B−c−2,−3 �B0
. Numerically �c−2,−3 is

nearly twice as large as the monolayer expression
−��2 /8�log�B /B0� over the range 0.5�B /B0�2 around
G=1. The decrease in v0

ren �B with B is larger in bilayer
graphene and may amount to about 7% for B /B0�2 �and
�b�5�. In this way, the renormalized velocity v0

ren is in gen-
eral different, in magnitude and running with B, for mono-
layer and bilayer graphene; it reflects their low-energy fea-
tures as well.

We are now ready to look into some typical channels of
cyclotron resonance. We use Eq. �4.11� and evaluate
�ck,n��ck←n numerically; for the bilayer the filling factor
�=4�nf+1� for nf�−2 while �=4nf for nf�1. For intraband
channels one finds

�c�1,−2 =
�=−4

0.7270 + 0.5484�G ,

�c−2,−3 =
�=−8

0,

�c−3,−4 =
�=−12

− 0.1521 − 0.0453�G ,

�c−4,−5 =
�=−16

− 0.2496 − 0.0797�G , �4.14�

where �G=G−1 with G= �̂1 / �v̂0
�B�T	�. Similarly, for inter-

band resonances one obtains

�c3←−2 =
�=−4

0.3922 − 0.0023�G ,

�c2←−3 =
�=−4

0.4794 + 0.0706�G ,

�c2←−3 =
�=−8

0.3872 + 0.0552�G ,

�c3←−4 =
�=−12

0.2961 + 0.00145�G; �4.15�

also �c4←−3 =
�=−4

0.41+¯ and �c4←−3 =
�=−8

0.29+¯. These lin-
earized expressions are numerically precise with errors of
less than 3% over the range 0.3�G�1.5. The many-body
effect is thus expected to be sizable in bilayer graphene. An
effective variation in v0

ren would amount to about
0.7Vc /�c

ren�20% for �k=0
1←−2 ��=−4 and about −5% for

�k=0
−3←−4 ��=−12, in comparison with �k=0

−2←−3 ��=−8.
As for experiment, Henriksen et al.21 measured, via IR

spectroscopy, cyclotron resonance in bilayer graphene in
magnetic fields up to 18 T. They observed intraband
transitions, which are identified with

�k=0

2←1 ��=4 ,�k=0
3←2 ��=8 ,�k=0

4←3 ��=12,�k=0
5←4 ��=16� and the correspond-

ing hole resonances listed in Eq. �4.14�, together with an
appreciable asymmetry between the electron and hole data.

Figure 3�c� reproduces the electron data of Ref. 21. There
the real curves represent the resonance energies in Eq. �4.11�
for Vc=0, with v̂0�1.15 deduced from the �=4 data and �̂1
taken to be 3.5, as supposed in Ref. 21. They poorly fit the
�=8,12,16 data. Unfortunately, inclusion of the O�Vc� cor-
rections scarcely improves the fit, as seen from the dotted
curves.

The situation becomes clearer if one, in view of Eq.
�4.11�, reorganizes the experimental data in the form
�k=0

k←n / �sk�k−sn�n� and plots them in units of �c=�2v0 /�
�with v0=1.15�106 m /s�. Figure 4�a� shows such a plot for
the electron data; for clarity the data points for different
channels, originally at B= �10,12,14,16� T, are slightly
shifted in B. It is to be contrasted with Fig. 4�b�, which
illustrates how each resonance would behave with B, accord-
ing to Eq. �4.11�, for Vc�10�B�T	 meV �or �b�5.6�; in
particular, the �=8 curve represents the running of v0

ren �B
according to Eq. �4.13�. In Fig. 4�a� the �=8,12,16 reso-
nances are apparently ordered in a way opposite to Fig. 4�b�,
and an appreciable gap between the �=4 resonance and the
rest is not very clear. The �=8,12,16 data show a general
trend to decrease with B, consistent with possible running of
v0

ren �B but at a rate faster than expected. It is rather difficult to
interpret these features, but they, in part, could be attributed
to possible quantum screening35 of the Coulomb interaction
in bilayer graphene such that �b is effectively larger36 for
lower B. Note, in this connection, Fig. 4�c� which shows that
the same data may suggest a Coulombic gap for a choice
�1�4 favored in Ref. 33. We further remark that, in spite of
an asymmetry in electron and hole data, the hole data shares
essentially the same features; see Fig. 4�d�.

No data are available for interband cyclotron resonance in
bilayer graphene at present. They are highly desired because
the comparison of interband and intraband resonances from
the same initial states would provide a clearer signal for the
many-body effect. We record the ratios
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�R�− 3 → � 2� �
�=−8

0.39Vc/�c
ren � 15%,

�R�− 4 → � 3� �
�=−12

0.45Vc/�c
ren � 18%, �4.16�

which imply that a close look into the �−3→�2� resonances
and the �−4→�3� resonances would find a sizable variation
�15% in v0

ren.

V. SUMMARY AND DISCUSSION

Graphene supports charge carriers that behave as Dirac
fermions, which, in a magnetic field, lead to a characteristic
particle-hole symmetric pattern of Landau levels. Accord-
ingly, unlike standard QH systems, there is a rich variety of
cyclotron resonance, both intraband and interband reso-
nances of various energies, in graphene.

In this paper we have studied many-body corrections to
cyclotron resonance in graphene. We have constructed an
effective theory using the SMA and noted that genuine non-
zero many-body corrections �not due to fine splitting in spin
or valley� derive from the quantum fluctuations of the
vacuum �the Dirac sea�. Such quantum corrections are intrin-

sically ultraviolet divergent and, as we have emphasized, it is
necessary to carry out renormalization of velocity v0 �and,
for bilayer graphene, interlayer coupling �1 as well� to deter-
mine the many-body corrections uniquely in terms of physi-
cal quantities. As a result, the observable intralayer and in-
terlayer coupling strengths v0

ren��0
ren and �1

ren in general run
with the magnetic field B.

Experimental data on cyclotron resonance generally have
sizable error bars, which make a clear identification of the
many-body effect difficult. In this respect, we have presented
a way to analyze the data, as in Figs. 2�b� and 4, with the
effect of renormalization properly taken into account.

For monolayer graphene a piece of data19 which compares
some leading interband and intraband resonances is appar-
ently consistent with the presence of many-body corrections
roughly in magnitude and sign, and also in the running of
v0

ren with B. For bilayer graphene the existing data are only
for intraband resonances and are rather puzzling, as dis-
cussed in Sec. IV. They generally appear to defy good fit by
theory but certainly suggest nontrivial features of many-body
corrections, such as running with B.

More precise measurements of cyclotron resonances are
highly desired. Of particular interest are experiments which
compare interband and intraband resonances from the same
initial states, as listed in Eqs. �3.22� and �4.16�, which would
clarify the many-body effect with minimal uncertainties.
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APPENDIX A: LANDAU LEVELS IN BILAYER GRAPHENE

This appendix summarizes the effective Hamiltonian and
its eigenfunctions for bilayer graphene in a magnetic field B.
The bilayer Hamiltonian with interlayer coupling �1��A�B
is written, at one �K� valley, as10

Hbi =�
0 v0


†

0 v0


v0

† 0 �1

v0
 �1 0
� , �A1�

which acts on an electron field of the form
#K= ��A ,�B� ,�A� ,�B�t in obvious notation; 
=
x− i
y and

†=
x+ i
y with Ai→B�−y ,0�.

The energy eigenvalues obey the equation

��n� − 1 − ��2���n� − ��2� − ��2����2 = 0, �A2�

where ����n /�c, ����1 /�c, and �c=�2v0 /�. This leads to
the two branches of spectra ��n ,�n

+� in Eqs. �4.1� and �4.4�. In
particular, zero energy �n=0 is possible for �n�=0 or
�n�=1 while ���1

+ ���1. A weak interlayer voltage
1
2 ��V�diag�1,−1,−1,1	, added to Hbi, reveals that the zero
modes actually have n=0+ and n=1 for �V�0.

The corresponding eigenfunctions for n=�2,�3, . . .
take the form
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FIG. 4. �Color online� Experimental data of Ref. 21, reorganized
in the form �k=0

k←n / �sk�k−sn�n� and plotted in units of �c=�2v0 /�2

�with v0=1.15�106 m /s�. �a� Electron data, analyzed with
v̂0=1.15 and �̂1=3.5; for clarity the data points, originally
at B= �10,12,14,16� T, are slightly shifted in B. �b� Theoretical
expectation according to Eq. �4.11� with v̂0=1.14, �̂1=3.5, and
Vc /�c�0.24 �or �b�5.6�. �c� Electron data, reanalyzed with
�̂1=4. �d� Hole data, analyzed with v̂0=1.02 and �̂1=3.5.
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#n = Dn�
��n�
!n

�2���n� − 2
!n

�3���n� − 1
!n

�4���n� − 1
� ,

!n
�2� =

��n� − 1

��
!n

�3�, !n
�3� = −

1

��

�n� − ��2

��n�
, �A3�

!n
�4� =

��
��n�

, Dn =
1
�2
��n���n� − 1 − ��2�

�n���n� − 1� − ��4 , �A4�

where only the orbital eigenmodes are shown using the stan-
dard harmonic-oscillator basis 
�n�. These expressions for
#n are equally valid for both the low- and high-energy
branches �n and �n

+ of Landau levels, depending on �� one
employs.

The zero-energy eigenmodes are given by

#0+
= ��0,0,0,0�t,

#1 = D1��1,0,− �1/����0,0�t, �A5�

with D1= �1+1 /��2�−1/2.
At another �K�� valley the Hamiltonian is given by Eq.

�A1� with v0→−v0 and acts on a field of the form
#K�= ��B� ,�A ,�B ,�A��

t. Accordingly one finds that

�n�K� = − �−n�K, Dn�K� = D−n�K, !n
�2��K� = !−n

�2��K,

!n
�3��K� = − !−n

�3��K, !n
�4��K� = − !−n

�4��K. �A6�

The zero-energy levels now have n=0− and n=−1.

APPENDIX B: COUPLING TO CURRENT

Consider a weak time-varying vector potential
�Ax�t� ,Ay�t�	 coupled to the total current in graphene. For the
effective Lagrangian L� in Eq. �3.4� this yields coupling of
Ai to �k=0

kn =�d2x�kn of the form

HA = − i
e��c

�2
��0dn
A�k=0

��n−1�,−n + A†�k=0
n,��n−1�� + H.c.,

�B1�

where dn=�1 /2 for n�2 and d1=�1 /�2; A=Ax− iAy; and
�0=1 / �2��2�. The cyclotron resonance thus obeys the selec-
tion rule ��n�=�1. In particular, the −n→� �n−1� transi-
tions and the ��n−1�→n transitions �n�1� are
distinguished31 by use of circularly polarized light �Ax� iAy.

Equation �B1� �with n�2� applies to the case of bilayer
graphene as well if one sets �c→�c

bi, A†→−A†, dn=�n−1
for n�3, and d2=�2, apart from terms of O���c /�1�2	.

APPENDIX C: PROPAGATORS

In this appendix we derive the electron propagator for
bilayer graphene in free space. Let us set 
→px− ipy in Hbi

of Eq. �A1� and consider the propagator

�#�x�#†�x�� = �x�1/�i�t − Hbi��x� �C1�

with �x��x�t. We divide the 4�4 matrix Hbi into a 2�2
block form and invert �i�t−Hbi�. In Fourier �p ,�� space the
propagator reads, in 2�2 block form

�##†11 =
i

D

���2 − v0

2p2 − �1
2� + �1v0

2P	1P� ,

�##†21 =
i

D
��2 − v0

2p2 + ��1	1�v0P ,

�##†12 =
i

D
v0P��2 − v0

2p2 + ��1	1� ,

�##†22 = i
�

D
��2 − v0

2p2 + ��1	1� , �C2�

where D= �v0
2p2−�2�2−�2�1

2= ��2−E+
2���2−E−

2� with
E�=��1

2 /4+v0
2p2��1 /2; P= p†	++ p	− and P	1P

= �p†�2	++ p2	− with p= px− ipy, p†= px+ ipy, and 	�
= �	1� i	2� /2.

This leads to the instantaneous propagator
��d� /2���##†, giving

�##†�t=t� =
1

4Dp
��1P	1P/p2 2v0P

2v0P �1	1
� �C3�

with Dp=��1
2 /4+v0

2p2.
To calculate the Coulomb exchange correction one

may replace, in Eq. �3.13�, iS�p� by this propagator.
Note that v0P / �2Dp� approaches, for p→�, the monolayer
propagator iS�p�=	ipi / �2�p�� �apart from an inessential mis-
match 	2→−	2 in notation�. As a result, setting
iS�p�→v0P / �2Dp� for v0 and iS�p�→�1 / �4Dp� for �1 and
carrying out the k integration, as in Eq. �3.13�, yield the
same amount of logarithmic divergence ��� /8�b�log �2 as
in the monolayer case; it thus renormalizes v0 and �1 simul-
taneously as in Eq. �4.8�.
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